
JOURNAL OF COMPUTATIONAL PHYSICS 63, 398415 (1986) 

SIMMI: A Linearized Particle Code 

GLENN JOYCE AND MARTIN LAMPE 

Plusmu Theory Branch, Phsma Physics Dioision, 

Nacul Research Lahorotor~. Washington, D.C. 20375 

Received September 26, 1984; revised June 12, 1985 

SIMM1 is a linearized particle simulation code used to study the resistive hose instability of 
a self-pinched relativistic electron beam propagating in resistive plasma. The code treats the 
zero-order axisymmetric beam dynamics as a group of macroparticle rings. The particle 
dynamics associated with the hose perturbations is represented by linearized displacements of 
these rings from the beam axis and by bunching of the charge density around the ring. The 
linearization procedure presents difficulties which must be dealt with to determine the long- 
time behavior of the system. The axisymmetric motion of the rings occurs under the influence 
of an anharmonic central potential which leads to secular behavior of the orbit perturbations. 
We have developed a method of coarse graining to deal with the problem of secularities. 
:( 1986 Acadenx Press, Inc. 

I. INTRODUCTION 

Self-pinched relativistic electron beams propagating in resistive plasma are sub- 
ject to the resistive hose instability, essentially a growing snakelike oscillation which 
is often observed to destroy the integrity of the beam [l]. For this instability, the 
linear regime (small instability amplitude) is of particular interest, because the 
mode grows convectively backward in the beam, and therefore it is possible within 
the linear regime for the instability amplitude at any given location in the beam to 
reach a maximum level and then decay. 

A variety of analytic techniques have been used to study the linearized hose 
instability [2-71, but these approaches have not been able to treat an essential 
feature of the problem, namely that self-pinched beams generally are not in time- 
independent equilibrium. The very front of the beam head is always unpinched and 
therefore continuously erodes away; also the beam radius increases steadily due to 
scattering off gas molecules, and the particle energy decreases and spreads due to 
various loss mechanisms. Even the radial profile of the beam density may change 
with time and from place to place in the beam. 

Two approximate numerical models have also been developed previously to 
simulate the space-time evolution of the linearized resistive hose instability [S, 71. 
In these treatments, the actual particle dynamics is replaced by simplified 
macroscopic models, which are carefully chosen to preserve a key feature of the 
dynamics, the spread in betatron oscillation frequency among the electrons follow- 
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ing various oscillation orbits in the pinched beam. [If this feature were absent from 
the model, the hose instability would erroneously become absolute rather than con- 
vective [4]]. The macroscopic models are capable of treating time-dependent 
equilibria, but they are limited to cases where the equilibrium beam density 
profile n,(r, z, t) has the self-similar form n,[r/a(z, t)], and furthermore the 
accuracy of the models has been demonstrated only for cases where this profile has 
the Bennett form, nb = nbo[ 1 + r2/a2(z, t)] - 2. However, the actual radial density 
profile of a self-pinched beam may be hollow, or may have wings of significant 
amplitude at large radius, or may (on the other hand) be cut-off sharply at some 
radius, or may vary greatly in shape from place to place in the beam. These types of 
details of the equilibrium, which cannot be represented in any of the existing 
models, can strongly affect the growth of the hose mode. 

The technique generally used to study instabilities in temporally and spatially 
varying situations is particle simulation, but in practice a standard unlinearized 
simulation using any reasonable number of simulation particles (e.g., lo6 or even 
more) might have a noise level large enough to mask or misrepresent the instability 
in the linear regime. To overcome these problems and to provide a very general 
treatment of the resistive hose, we have developed a linearized particle simulation 
code, which successfully determines both growth rates and saturation amplitudes 
during the small-amplitude stage of the instability [9]. The techniques used, which 
build upon the earlier work of Friedman, Denavit, and Sudan [lo] may also be 
applicable to other instabilities which grow out of complicated or time-varying 
equilibria. Chambers, Masamitsu, and Lee have also developed a linearized particle 
simulation code to treat hose instability [ 111. Their work is similar to ours in some 
ways and differs in other ways, e.g., they do not use the “coarse-graining ” techni- 
que described in this paper. 

The code, SIMMl, treats the zero-order axisymmetric beam dynamics (m = 0, 
where the azimuthal dependence is Fourier analyzed into eimH dependence) as a 
group of axisymmetric macroparticle rings. This portion of the code is named 
SIMM0 and has been discussed in a previous publication [ 121. The m = 1 particle 
dynamics associated with the hose perturbations is represented by linearized dis- 
placements of these rings from the beam axis and by M = 1 bunching of the charge 
density around the ring. 

A large number of these rings are followed in time as they interact with each 
other and with the background gas. The beam is assumed to be highly relativistic so 
that quantities of the order of y P2 = 1 - u’/c’ are neglected. The paraxial 
approximation is also made, i.e., the axial velocities of the particles are taken to 
be c, and the perpendicular velocities are assumed to be small. The dynamics of the 
particles’ motions are determined from solutions of Maxwell’s equations. A sim- 
plified form of Maxwell’s equations is appropriate to highly relativistic, paraxial 
beams 13. The equations are presented in Appendix A. The beam travels through a 
gas which is assumed to be highly collisional and so dense that its mass motions 
can be neglected on the beam time scale. The beam partially ionizes the gas which, 
in turn, provides charge neutralization and allows the beam to self-pinch in its own 
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magnetic field. The gas is modeled as a stationary conducting medium with a local 
scalar conductivity which is determined by the process of beam-impact ionization, 
avalanche ionization (when there are large beam-generated electric fields), and 
recombination. Conductivity physics can be modeled at various levels of 
sophistication. The model used in SIMM1 is discussed in Appendix A. The code, 
then, consists of axisymmetric dynamics, linearized m = 1 dynamics, electromagnetic 
field generation, and interactions with the background gas. 

The linearization procedure presents difficulties which must be dealt with to 
determine the long-time behavior of the system. The zero-order axisymmetric 
motion of the rings occurs under the influence of an anharmonic central potential, 
so the period of their motion depends on the oscillation amplitude. Within a 
linearized model, this effect leads to secular behavior of the m = 1 perturbations to 
the orbits. With a large enough number of particles, the individual orbit secularities 
would average out to yield nonsecular macroscopic quantities, but to run a prac- 
tical simulation some method of suppressing the long-time orbit secularities must be 
employed. We have developed a method of coarse graining to deal with this 
problem. 

We will discuss the linearization process in Section II; the problem of secular 
behavior and its resolution by coarse graining in Section III. Details are given in 
Appendices A and B. 

II. CODE STRUCTURE 

SIMM1 is greatly simplified by our approximation that all particles have axial 
velocity c, so that no particle overtaking is permitted along the beam axis. As a 
result, we can consider the beam to be made up of a series of slices of particles 
stacked along the beam axis from its head to its tail. The simulation can be thought 
of as a number of two-dimensional (Y, 0) simulations, with information carried 
along the axis by the fields and conductivity. 

We use as our independent variables r, 0, c z ct - z, and z where t is the time and 
ct is the position of the beam head in space. The coordinate c is a measure of the 
distance along the axis from the beam head. In this set of coordinates, z acts as a 
time-like variable with regard to beam dynamics, while [ is a constant of the 
motion for any particle. 

A. Particle Dynamics 

The beam particle dynamics is represented in terms of the motion of particle 
rings under the m = 0 and m = 1 forces. Each ring represents the set of all particles 
with the same initial value of r, [, radial velocity, and angular momentum. It is 
obvious that under the influence of an axisymmetric force the m = 0 motion of this 
set of particles is such that it remains a ring, with radius increasing or decreasing in 
time. To calculate the m = 0 dynamics of the ring, it is thus sufficient to follow the 
dynamics of any one particle on the ring. It is more convenient to do this in Car- 
tesian coordinates in the r - 0 plane; our method is described elsewhere [12]. 
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To first order in treating the m = 1 perturbations, each particle can be assigned a 
small time-dependent displacement from its equilibrium orbit in the r - 8 plane. 
Friedman et al. [lo] have shown that to first order the set of particles forming any 
given ring still lie on a circular ring, but that the center of the ring is displaced from 
the origin by a small vector quantity, and that in addition the charge density 
around the ring is no longer uniform, but rather is (slightly) bunched as e’(‘--‘“). 
The linearized m = 1 dynamics of all particles in the ring is thus characterized by 
four time-dependent quantities: the two components of the displacement of the ring 
center, the bunching axis 8,, and the amplitude of the bunching. These four quan- 
tities can be represented in various ways; the following scheme is one way of doing 
this and of tying the dynamics of the whole ring to that of one reference particle on 
it. 

Figure 1 shows the equilibrium and perturbed positions of some ring. R and P 
are two particles on the perturbed ring, and R’ and P’ are the perturbed positions 
of these particles. We represent the line segment RR’ = Re (E(R)). The quantity E(R) 
is the perturbation of the ring at the point R. In the same manner the line segment 
p’= (E(P)). Note that the arc ?@ may not be the same length as the arc m, 
since the ring of charge is bunched as well as displaced. 

It can be shown Friedman et al. [lo] that if we choose the relationship between 
E(R) and E(P) to be given by 

F,(P) = c,(R)e’$ 

FIG. 1. Schematic of an axisymmetric and a perturbed electron ring. The reference points R and P on 
the unperturbed ring map into the points R’ and P’ on the perturbed ring. 
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E,(P) = +(R)e’“, 

where 4 is the azimuthal separation of P and R, the motions of the perturbations 
are consistent with the dynamics of the m = 1 fields and that we only need to follow 
the dynamics of the perturbation at a single reference point R. The two complex 
quantities E, and cO thus contain all the information about the bunching and dis- 
placement of the ring. 

Although we have chosen a complex representation of the perturbations, physical 
quantities must be real. If we let 

& = Er + iE’, 

we can write 

PP’ = Re (&(R)e’@) 

= (E: COs 4 - E: sin 4, s;j cos 4 -E: sin 4). 

We choose to identify &f. = E;(R), &:I = --c:(R), E:, = E;;(R), and Eb’ = -&i,(R). Thus 

PP’ = (EL cos q5 + si’ sin 4, E; cos Q + E:: sin 4). 

The particle dynamics are computed in Cartesian coordinates. In that coordinate 
system, we need to follow the four quantities EL, E),, E:, sf!, defined by 

where o! is the azimuthal coordinate of the reference particle R. 
We use an approximation to Maxwell’s equations that was first derived by Lee 

[ 131 and is reasonable for an ultrarelativistic beam in a collisional gas. These 
equations are given in Appendix A along with a simplified conductivity equation 
which models direct ionization, avalanche ionization and recombination of the 
background gas. 

We consider only beam perturbations linearly polarized along the y axis. For this 
case the linearized current density and conductivity are 

Jbz = $- + JL; sin 8, 

and 

a=o”+01sin8. 

The only nonzero electric and magnetic fields are 
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B,=B~+B~sinO, 

B, = B; cos 6, 

E,=Ef+Ef_sinO, 

E,=E~+E~sinO, 

EH = E; COS 8. 

We use the notation introduced for the E’S to write 
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Jbs = 4; + JiL sin 0, 

0 = 0’ + d’ sin 8, 

B, = B” + B” sin 0 0 H ) 

B, = Bf. cos 0, 

E, = e + EL’ sin 0 

E = I? + E” sin 0, r r r 

E, = E:, cos 8. 

The equations of motion of the perturbations are then 

mOc2 d 
4 z (yl’,) = Ef’ sin LX cos N - EL cos tl sin CI 

- cBF sin CI cos CI - cBf: cos LY sin CI 

+jE:cos2a+$cosusinc?)(~--c~) 

moc2 d 
+ (EL sin2 LX - E.:, cos c( sin LY) (EF/r - cB@), 

7~ (~8:) = EP cos* tl + Ei sin2 GI 

+ cB: sin* CI - cBF cos’ u 

mOc2 d 
+ (E: sin2 c1- E:,’ cos LX sin a) (e/r - cBi/r), 

4 z (yit) = EP sin’ a + EA cos’ c( 

+ cBf. cos’ LY - cBF sin’ c1 

+ ((, Cm2 U-E’, COS CI sin a) (EF/r - c@/r), 
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moc2 d 
4 z ($) = Ef’ cos a sin a - Ef+ cos a sin a 

- cBf. sin a cos a - cBil cos a sin a 

+ (E;,! cos’ a - &‘,I cos a sin a) (EF/r - cBi/r) 

where 6 - dE/dz. 
These four complicated equations form the basis of the perturbation dynamics. 

Although the total beam perturbation is along the y axis, the motion of any single 
ring is such that its center can lie at any point off the axis. Only in adding all the 
ring positions together do we get the effects of the simplified perturbation. 
Otherwise stated, a single ring has angular momentum, so its motion does not in 
general have the same symmetry as the driving fields; however (it is tacitly 
assumed) the distribution over angular momentum is even, which restores the sym- 
metry of the beam as a whole. 

B. Current Density 

In the paraxial approximation, the beam current density component JZ along the 
axis is proportional to the charge density and the components of J perpendicular to 
the axis are neglected. The charge density for a beam made up of point particles 
formed into rings can be written as 

where the sum is over the rings and the angle 4 is the azimuthal angle of Fig. 1. The 
rk(qS) represents the displacement of the ring from the axis and e,(4) represents 
charge bunching. 

For a system of finite sized particles, the h-function 6(r - rk(q5)) is replaced by a 
particle shape function S,(r - rJq5)). Within the framework of the linearization 
procedure, we can write 

rk(d) = r:! + Erke’@, 

Ok(#) = ek + +ei4/rjj, 
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The zeroth- and first-order current densities can be written 

Em JLeie = - c E S,(r - ~2) - le’ .(e -aa) 
k 2Tcr r :! 

- TEg (r-ri)E,ke’(O-“k). 

Finally, we can write the current density as a real function consistent with beam 
displacements in the y direction as 

J,= --TESAr-rp)i [-(-Etksina,+$coscr,)cosa, 

+ ( -&‘,:, sin c(k + &-$ cos c(k) sin a,] 

cos uk + EI~,~ sin elk) sin c(~ 

+ (Et:, cos elk + c’,,i sin ak) cos ~(~1. 

Since the perturbation current density contains derivatives of the particle shape, a 
shape function with continuous derivatives is necessary. We have chosen a 
quadratic particle interpolation scheme as suggested by Friedman et al. [lo]. 

III. COARSE GRAINING 

Although formally we have derived a set of equations to describe the motions of 
the perturbation quantities, the nature of the beam particle motion results in the 
breakdown of the linearization procedure under some circumstances. The pertur- 
bation of each individual particle ring grows without bound even in the absence of 
m = 1 forces. To visualize this behavior, we consider the simpler problem of motion 
of particles in a fixed axisymmetric potential. (Since information only propagates 
backwards in a beam moving at v; = c, this is equivalent to the problem of the 
motion of the first perturbed slice of the beam, which is subject to axisymmetric 
fields determined by the previous unperturbed beam slices.) 

The motion of a beam particle in the plane perpendicular to the beam axis, sub- 
ject to an anharmonic potential well, is quite complicated. In general, the particle 
will trace out an unclosed rosette orbit. The essential feature, however, is that the 
radial oscillation period and the azimuthal drift rate depend on the particle’s 
angular momentum and the amplitude of the orbit. Because of this dependence, two 
particles whose amplitudes are infinitely infinitesimally different will separate in 

581/63/2-l 1 



406 JOYCE AND LAMPE 

time until their separation becomes comparable to the particles’ ampitudes them- 
selves. If we think of the difference in the amplitudes as the perturbation quantity, 
we see that there is secular growth of the perturbation, which is proportional to 
time as long as the perturbation remains small compared to the orbit amplitude. 
We expect that for a beam slice subject only to an axisymmetric force, but initially 
displaced from the axis, phase mixing among particles of different oscillation fre- 
quency will eventually return the slice to axisymmetry. In an idealized simulation 
with an infinite number of particles, this process could be well modeled for an 
indefinite time; the growing individual particle perturbations would average out 
when macroscopic quantities were calculated. However, in an actual simulation 
with N particles per slice, the noise level (for quantities like the mean displacement 
of a slice) is of the order of EN- ‘12, where E is a typical perturbation amplitude for 
an individual particle. Since E a t, the noise eventually comes to dominate at a 
time t which scales as N”‘. Thus increasing N delays the breakdown of the 
linearized model, but eventually the phase mixing process is overwhelmed by a 
growing noise signal. We illustrate this behavior by running a simulation of a single 
slice in which the magnetic pinch force is calculated from Amperes law for a fixed 
Bennett distribution of current, i.e., J,(r) = J,( 1 + r2/a2) -2, giving a 
force F(r) = -e’J,,r( 1 + ~~/a~)-‘. The beam profile initially is taken to be a similar 
Bennett profile displaced from the axis. Figure 2 shows the time behavior of the 
beam centroid y, for two cases which differ only in the number N of simulation par- 
ticles. As N increases, the time that the simulation matches the correct physics 
(steadily decaying oscillations ofy) increases as expected. At late times, the noise 
appears to grow as tN ~ If2 and, in all cases, dominates the simulation at late enough 
times. 

a IO, , , , , , , , , / , , 

1 

i 

FIG. 2. Mean displacement of a beam slice in a fixed Bennett potential as a function of propagation 
distance. The coarse graining algorithm was not employed. (a) A slice containing 1000 rings, (b) a slice 
containing 10,000 rings. 
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Not all particle orbits exhibit secular behavior at the same rate. A Bennett-like 
potential is nearly harmonic close to the beam axis. Particles whose orbits lie in this 
region show very slow secular behavior while particles which make large excursions 
in radius, i.e., those with high perpendicular energy but small angular momentum, 
show the fastest secular growth in a stationary potential. 

For the hose instability, which is convective, the macroscopic beam perturbations 
at any given location ( in the beam grow, saturate and then decay. The growth 
phase is well modeled in a linearized simulation of the type we are discussing, since 
the exponential growth of the ordered motion easily overwhelms the secular growth 
of the noise. However, the saturation and decay cannot be modeled by our 
straightforward linearized simulation unless an extremely large number of particles 
are employed. If the simulation is to be useful, some method of eliminating the 
effect of the secularities must be used. 

To eliminate the secular growth of the noise, it suffices to break up the ordered 
secular growth of the individual particle perturbations. In general, we have no 
interest in individual particle dynamics, but only in the various macroscopic 
moments. Furthermore, every particle ring carries with it both axisymmetric 
attributes-x, y, u,, u,,, y-that d e ermine t the position and motion of the ring and 
the transport of information from one radial region to another by means of large 
scale particle orbits, and linearized attributes-s:, E:, E-L, E.!, ii, 2:, it, g:-that 
carry the perturbation information. The problem of secularities affects only the 
linearized quantities. Our task is thus to find some technique that preserves the 
unperturbed orbits and the present value of the macroscopic quantities, but 
somehow averages out the perturbed quantities pertaining to the individual par- 
ticles before they have the opportunity to grow intolerably large. In particular, the 
beam property that acts as the source for the electromagnetic field equations is the 
axial component J,(r, [, z) of current density, which is equal to cp(r, [, z), where p 
is the charge density, since all particles have v, = c. 

We have developed a technique that we call “coarse graining” that accomplishes 
these objectives. Basically, this consists of periodically performing averages of all 
the perturbed quantities E and i: over all the particles in a given cell in configuration 
space. The E’S and c’s for all of these particles are then reset to the average value at 
that cell. The averages are weighted in such a way that the perturbed current 
density Ji’(r, [, z) is left unchanged. The process is similar to one of the techniques 
of “local reconstruction” suggested by Friedman, Denavit and Sudan [ 141. We 
believe that this process is faithful to the physics of the hose instability. Since the 
instability is basically fluid-like, it is driven by the macroscopic quantity Jl(r, [, z), 

which is preserved each time the phase-space is coarse grained. On the other hand, 
the essential feature of phase-mixing is preserved, since the unperturbed orbits are 
not altered in any way. The coarse graining technique would probably not be 
appropriate to resonant micro-instabilities, since resonant wave-particle interac- 
tions would be disrupted. The algorithm for performing the coarse graining is 
presented in detail in Appendix B. 

The coarse graining should be performed at intervals which are long compared to 
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the individual simulation time steps, but short compared to the times for secular 
growth. Since the oscillation period of typical particles in the axisymmetric poten- 
tial well (the “betatron period”) is the characteristic time for doubling of the initial 
individual particle E’S, it is suggested that the coarse graining interval be of the 
order of the betatron period. Of course the macroscopic time evolution must be 
insensitive to the exact choice of coarse graining interval, if the results are to be 
meaningful. 

To illustrate the technique, the problem of a single displaced beam slice subject 
to a fixed Bennett potential-Fig. 2-was rerun on the code with coarse graining. 

FIG. 3. Mean displacement of a beam slice in a fixed Bennett potential as a function of propagation 
distance. The coarse graining algorithm was employed. Each slice contained loo0 rings. The coarse 
graining was applied every (a) 10 time steps, (b) 20 time steps, (c) 30 time steps. 
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The averaging process was carried out at various intervals. For intervals between 
about 0.5 to 1.5 betatron periods, the results were insensitive to the averaging fre- 
quency, as shown in Fig. 3. The displacement dies out in a manner similar to that 
without coarse graining, but the late-time noise which was seen in the previous 
figure does not reappear. 

For static potentials, the coarse graining algorithm we have described works 
quite well. When the potential varies in time, as it does in the problems of interest, 
where beam perturbations self-consistently drive the fields for instability modes like 
the resistive hose, another effect can prove troublesome numerically. Cham- 
bers [15] and Friedman et al. [14] have shown that a few particles experience 
almost exponential growth of their perturbed quantities E, in a stochastic way that 
is nearly impossible to resolve in simulations. Furthermore, this effect can be spread 
to a large number of particles by the coarse graining algorithm. We deal with this 
problem in an ad hoc way which seems to have only a minimal effect on the system 
as a whole. At each time step we determine which ring in the slice has the largest 
value of E. We replace the E and d of this ring with values averaged over all the par- 
ticles in the slice. This replacement tends to make the slice behave slightly more like 
a rigid beam, but at each time step affects only one particle in about 2000. 

The effect of applying both algorithms is a linearized particle code which can 
treat the hose instability in a way which accurately reproduces the growth, 
saturation and decay. Figure 4 shows the result of a hose simulation with SIMMl, 
including coarse graining. We note that at any given location [ in the beam, the 
mode grows (in good agreement with linear theory [7]) saturates and then decays; 

FIG. 4. Surface plot of the hose displacement j as a function of the distance back from the beam 
head (’ and propagation distance, z. The coarse graining algorithm was applied every 20 steps. The con- 
vective nature of the instability was preserved in the siniulation. 
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FIG. 5. Hose displacement j as a function of propagation distance z for a slice of the beam of the 
simulation of an unstable beam far behind the beam head. The hose amplitude grows, saturates, and 
eventually decays. The shift to higher frequencies at late times is a real effect due to variation of the 
beam radius from head to tail; it will be discussed elsewhere. 

FIG. 6. Hose displacement j as a function of propagation distance z for a beam slice of a simulation 
identical to that of Fig. 5, but without coarse graining algorithm. The hose amplitude grows, saturates, 
and then regrows due to secular growth effects. 
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as a function of z, the mode continues to grow convectively backward in [. Figure 5 
shows the displacement of a single slice far behind the beam head. The meaningful 
results shown in Figs. 4 and 5, i.e., growth rates, saturation point, peak amplitude, 
extent of decay, are quite insensitive to variations in the coarse graining interval, as 
long as it is within, say, 0.5 to 1.5 mean betatron periods. However, minor 
variations in, e.g., individual oscillation peaks can be detected. Fig. 6 shows the 
results of an identical run without coarse graining or averaging out the largest E. 
For this case, the mode grows as before but after it saturates, the seculiar behavior 
becomes dominant and the displacements continue to grow without bound. 

APPENDIX A 

The field equations used in SIMM1 are the reduced set of Maxwell’s equations 
derived by Lee [13]. Using the paraxial approximation and i instead of z as an 
independent variable, we can write 

V:A, = -(4n/c)J,, 

V:A;= -4”L, 
c 

V,.J,-%+?=O, 

V A -“A;+?!=, I’ I 
ai ai ’ 

where A is the vector potential, C$ is the scalar potential, the subscript z is associated 
with the axial direction and the subscript I is associated with the radial variables r 
and 8. 

The electromagnetic fields can be obtained from 

E, = -dA,-v,& 
x 

B,= -P,x 

Bz=(V, xA)z, 

J, =oE,, 

J,=J,,+aE,. 
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The field equations simplify further if we drop the transverse displacement current 
and write 

E, = -V,qi 

Then the field equations can be written as 

and 

where 

v: p+$vLq5, 

&‘=A.-#. 

We introduce cylindrical coordinates, and make a linearized multipole decom- 
position of the azimuthal dependence. Then 

J,, = c + Ji, sin 8, 

a=a”+al sin0, 

d = do + d’ sin 19, 

q5 = 4” + 4’ sin 8, 

if we consider only displacements along the y axis. 
The field equations are 

1 a &Zz” 1 a 47ca0 ac$O -- r-=--r-- 
r f3r &a~ r ar c dr’ 

and 

ala ad’ ia 4d a41 4d ado 47rra0 fj’ --- 
drrarr~=--’ 

-- -- 
r & ( c at-+ c & -CT’ > 

The code determines the conductivity from the linearized version of 
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where, if the propagation medium is air, we use the rough model [16], 

K = 8.5 x 10 P4 cm/statcoulomb, 

/lr = 7.0 x lo-l5 set/cm, 

and 

where 

yi = [ApS3/( 1 + BS + C’S* + DS3)] sec.- ‘, 

S = E2/p2, 

E is the electric field in statvolts/cm, p is the air density in atmospheres, and 

A = 1.42 x lop4 

B=9.18x 10-6, 

C=2.66x lo--“, 

D = 2.82 x 10 - “. 

One could envision improving this model in a variety of ways, such as making K 

and fir temperature-independent, including attachment, including the effects of 
various minority species and chemical changes in complex gases such as air, and 
modeling nonlocal or magnetic field dependent conductivity if the electron mean 
free path is long compared to the macroscopic lengths or Larmor radii. 

APPENDIX B 

Consider the equation for J:I(r, [) rewritten as 

sin c(k - && cos ak) cos c(k ($ sin @k - && cos uk)] 

-2: C SAri;r---i), 
k E N, 

[(&ix cos ak + i$ sin @.k) sin ak + (.$ cos c(k + i+, sin c(k) cos a,], 

where the first summation is over all particles in cell N, and the second summation 
is over cells. 

The two quantities which must be preserved by the averaging process are 

Fk, = (&:, + &it) sin ak cos c(k - &kY cos* ak -&L\ sin2 @k, 

Fk2 = (&& + &&) sin c(k cos tlk - && sin2 ak - &k\ cos2 ak. 
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Recall that, in the average, only the E’S are changed. The quantities ~~ 
and Sr(rE, Y - rz) depend on axisymmetric variables and are the same before and 
after the averages. If Fk, and Fk2 are preserved in the average so are linear com- 
binations of them. In particular 

and 

Fkl + Fk, = (&it + E;‘“) sin 2~ + (E: -EL) cos 2a, 

will be unchanged. If we choose to average in such a way that EL,, + sjJX, 
(EL; - &&) cos 2a,, &ix sin 2r~~, and E:~, sin 2c(, are preserved then Fk, and Fk‘,,will be 
unchanged. 

Let 

and 

then the averages can be written as 

&= 1 6k2cos h, 2 cos 2$, 
ksN, k t N, 

and 

while 

C sin 2cik, 
k E N, 

$- 

y -kf.N 

EL: sin 2c(, 
i 

1 sin 2u,. 
s kcNr 

Finally, we associate the averages with the E’S of individual rings by using the 
particle shape functions. 

In addition to averaging over the E’S, some method must be employed to average 
the 6’s. The method which suggests itself is to form averages which preserve j,. 
These averages depend not only on the particle shapes and positions but also on 
the rotation velocity of the rings. In practice, these averages, especially at small 
radii, tend to be dominated by a few rapidly spinning rings. As a compromise, 
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we have chosen to perform unweighted averages of Ek, ii, .6!, and P. We have 
performed a number of tests on the d averages and the method apbears to be 
satisfactory. 
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